Various depth estimation models are now widely used on many mobile and IoT devices for image segmentation, bokeh effect rendering, object tracking and many other mobile tasks. Thus, it is very crucial to have efficient and accurate depth estimation models that can run fast on low-power mobile chipsets. In this Mobile AI challenge, the target was to develop deep learning-based single image depth estimation solutions that can show a real-time performance on IoT platforms and smartphones. For this, the participants used a large-scale RGB-to-depth dataset that was collected with the ZED stereo camera capable to generated depth maps for objects located at up to 50 meters. The runtime of all models was evaluated on the Raspberry Pi 4 platform, where the developed solutions were able to generate VGA resolution depth maps at up to 27 FPS while achieving high fidelity results. All models developed in the challenge are also compatible with any Android or Linux-based mobile devices, their detailed description is provided in this paper.
translated by 谷歌翻译
道路网络和轨迹表示学习对于交通系统至关重要,因为学习的表示形式可以直接用于各种下游任务(例如,交通速度推理和旅行时间估计)。但是,大多数现有方法仅在同一规模内对比,即分别处理道路网络和轨迹,这些方法忽略了有价值的相互关系。在本文中,我们旨在提出一个统一的框架,该框架共同学习道路网络和轨迹表示端到端。我们为公路对比度和轨迹 - 轨迹对比度分别设计了特定领域的增强功能,即路段及其上下文邻居和轨迹分别替换和丢弃了替代方案。最重要的是,我们进一步引入了路面跨尺度对比,与最大化总互信息桥接了这两个尺度。与仅在形成对比的图形及其归属节点上的现有跨尺度对比度学习方法不同,路段和轨迹之间的对比是通过新颖的正面抽样和适应性加权策略精心量身定制的。我们基于两个实际数据集进行了审慎的实验,这些数据集具有四个下游任务,证明了性能和有效性的提高。该代码可在https://github.com/mzy94/jclrnt上找到。
translated by 谷歌翻译
Twitter机器人检测是一项重要且有意义的任务。现有的基于文本的方法可以深入分析用户推文内容,从而实现高性能。但是,新颖的Twitter机器人通过窃取真正的用户的推文并用良性推文稀释恶意内容来逃避这些检测。这些新颖的机器人被认为以语义不一致的特征。此外,最近出现了利用Twitter图结构的方法,显示出巨大的竞争力。但是,几乎没有一种方法使文本和图形模式深入融合并进行了交互,以利用优势并了解两种方式的相对重要性。在本文中,我们提出了一个名为BIC的新型模型,该模型使文本和图形模式深入互动并检测到推文语义不一致。具体而言,BIC包含一个文本传播模块,一个图形传播模块,可分别在文本和图形结构上进行机器人检测,以及可证明有效的文本互动模块,以使两者相互作用。此外,BIC还包含一个语义一致性检测模块,以从推文中学习语义一致性信息。广泛的实验表明,我们的框架在全面的Twitter机器人基准上优于竞争基准。我们还证明了拟议的相互作用和语义一致性检测的有效性。
translated by 谷歌翻译
蛋白质是人类生命的重要组成部分,其结构对于功能和机制分析很重要。最近的工作表明了AI驱动方法对蛋白质结构预测的潜力。但是,新模型的开发受到数据集和基准测试培训程序的限制。据我们所知,现有的开源数据集远不足以满足现代蛋白质序列相关研究的需求。为了解决这个问题,我们介绍了具有高覆盖率和多样性的第一个百万级蛋白质结构预测数据集,称为PSP。该数据集由570K真实结构序列(10TB)和745K互补蒸馏序列(15TB)组成。此外,我们还提供了该数据集上SOTA蛋白结构预测模型的基准测试训练程序。我们通过参与客串比赛验证该数据集的实用程序进行培训,我们的模特赢得了第一名。我们希望我们的PSP数据集以及培训基准能够为AI驱动的蛋白质相关研究提供更广泛的AI/生物学研究人员社区。
translated by 谷歌翻译
Twitter机器人检测已成为打击错误信息,促进社交媒体节制并保持在线话语的完整性的越来越重要的任务。最先进的机器人检测方法通常利用Twitter网络的图形结构,在面对传统方法无法检测到的新型Twitter机器人时,它们表现出令人鼓舞的性能。但是,现有的Twitter机器人检测数据集很少是基于图形的,即使这些基于图形的数据集也遭受有限的数据集量表,不完整的图形结构以及低注释质量。实际上,缺乏解决这些问题的大规模基于图的Twitter机器人检测基准,严重阻碍了基于图形的机器人检测方法的开发和评估。在本文中,我们提出了Twibot-22,这是一个综合基于图的Twitter机器人检测基准,它显示了迄今为止最大的数据集,在Twitter网络上提供了多元化的实体和关系,并且与现有数据集相比具有更好的注释质量。此外,我们重新实施35代表性的Twitter机器人检测基线,并在包括Twibot-22在内的9个数据集上进行评估,以促进对模型性能和对研究进度的整体了解的公平比较。为了促进进一步的研究,我们将所有实施的代码和数据集巩固到Twibot-22评估框架中,研究人员可以在其中始终如一地评估新的模型和数据集。 Twibot-22 Twitter机器人检测基准和评估框架可在https://twibot22.github.io/上公开获得。
translated by 谷歌翻译
Face Anti-spoofing (FAS) is essential to secure face recognition systems from various physical attacks. However, recent research generally focuses on short-distance applications (i.e., phone unlocking) while lacking consideration of long-distance scenes (i.e., surveillance security checks). In order to promote relevant research and fill this gap in the community, we collect a large-scale Surveillance High-Fidelity Mask (SuHiFiMask) dataset captured under 40 surveillance scenes, which has 101 subjects from different age groups with 232 3D attacks (high-fidelity masks), 200 2D attacks (posters, portraits, and screens), and 2 adversarial attacks. In this scene, low image resolution and noise interference are new challenges faced in surveillance FAS. Together with the SuHiFiMask dataset, we propose a Contrastive Quality-Invariance Learning (CQIL) network to alleviate the performance degradation caused by image quality from three aspects: (1) An Image Quality Variable module (IQV) is introduced to recover image information associated with discrimination by combining the super-resolution network. (2) Using generated sample pairs to simulate quality variance distributions to help contrastive learning strategies obtain robust feature representation under quality variation. (3) A Separate Quality Network (SQN) is designed to learn discriminative features independent of image quality. Finally, a large number of experiments verify the quality of the SuHiFiMask dataset and the superiority of the proposed CQIL.
translated by 谷歌翻译
Embedding words in vector space is a fundamental first step in state-of-the-art natural language processing (NLP). Typical NLP solutions employ pre-defined vector representations to improve generalization by co-locating similar words in vector space. For instance, Word2Vec is a self-supervised predictive model that captures the context of words using a neural network. Similarly, GLoVe is a popular unsupervised model incorporating corpus-wide word co-occurrence statistics. Such word embedding has significantly boosted important NLP tasks, including sentiment analysis, document classification, and machine translation. However, the embeddings are dense floating-point vectors, making them expensive to compute and difficult to interpret. In this paper, we instead propose to represent the semantics of words with a few defining words that are related using propositional logic. To produce such logical embeddings, we introduce a Tsetlin Machine-based autoencoder that learns logical clauses self-supervised. The clauses consist of contextual words like "black," "cup," and "hot" to define other words like "coffee," thus being human-understandable. We evaluate our embedding approach on several intrinsic and extrinsic benchmarks, outperforming GLoVe on six classification tasks. Furthermore, we investigate the interpretability of our embedding using the logical representations acquired during training. We also visualize word clusters in vector space, demonstrating how our logical embedding co-locate similar words.
translated by 谷歌翻译
The surrogate loss of variational autoencoders (VAEs) poses various challenges to their training, inducing the imbalance between task fitting and representation inference. To avert this, the existing strategies for VAEs focus on adjusting the tradeoff by introducing hyperparameters, deriving a tighter bound under some mild assumptions, or decomposing the loss components per certain neural settings. VAEs still suffer from uncertain tradeoff learning.We propose a novel evolutionary variational autoencoder (eVAE) building on the variational information bottleneck (VIB) theory and integrative evolutionary neural learning. eVAE integrates a variational genetic algorithm into VAE with variational evolutionary operators including variational mutation, crossover, and evolution. Its inner-outer-joint training mechanism synergistically and dynamically generates and updates the uncertain tradeoff learning in the evidence lower bound (ELBO) without additional constraints. Apart from learning a lossy compression and representation of data under the VIB assumption, eVAE presents an evolutionary paradigm to tune critical factors of VAEs and deep neural networks and addresses the premature convergence and random search problem by integrating evolutionary optimization into deep learning. Experiments show that eVAE addresses the KL-vanishing problem for text generation with low reconstruction loss, generates all disentangled factors with sharp images, and improves the image generation quality,respectively. eVAE achieves better reconstruction loss, disentanglement, and generation-inference balance than its competitors.
translated by 谷歌翻译
With the increasing ability of large language models (LLMs), in-context learning (ICL) has become a new paradigm for natural language processing (NLP), where LLMs make predictions only based on contexts augmented with a few training examples. It has been a new trend exploring ICL to evaluate and extrapolate the ability of LLMs. In this paper, we aim to survey and summarize the progress, challenges, and future work in ICL. We first present a formal definition of ICL and clarify its correlation to related studies. Then, we organize and discuss advanced techniques of ICL, including training strategies, prompting strategies, and so on. Finally, we present the challenges of ICL and provide potential directions for further research. We hope our work can encourage more research on uncovering how ICL works and improving ICL in future work.
translated by 谷歌翻译
Reinforcement learning (RL) is one of the most important branches of AI. Due to its capacity for self-adaption and decision-making in dynamic environments, reinforcement learning has been widely applied in multiple areas, such as healthcare, data markets, autonomous driving, and robotics. However, some of these applications and systems have been shown to be vulnerable to security or privacy attacks, resulting in unreliable or unstable services. A large number of studies have focused on these security and privacy problems in reinforcement learning. However, few surveys have provided a systematic review and comparison of existing problems and state-of-the-art solutions to keep up with the pace of emerging threats. Accordingly, we herein present such a comprehensive review to explain and summarize the challenges associated with security and privacy in reinforcement learning from a new perspective, namely that of the Markov Decision Process (MDP). In this survey, we first introduce the key concepts related to this area. Next, we cover the security and privacy issues linked to the state, action, environment, and reward function of the MDP process, respectively. We further highlight the special characteristics of security and privacy methodologies related to reinforcement learning. Finally, we discuss the possible future research directions within this area.
translated by 谷歌翻译